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1. Introduction

The Naval Health Research Center’s (NHRC) Tactical 
Medical Logistics (TML+) planning tool aids the medical 
planner by simulating, in a systems sense, a broad range of 
stochastic events associated with a battlefield casualty’s dis-
position from the point-of-injury (POI) to definitive care 
(http://www.tmlsim.com). As designed and developed during 
FY01 to FY07, TML+ is a software program for medical 
planners that estimates medical resource requirements using 
data from the Estimating Supplies Program (ESP).1 It per-
mits a broad range of operational risk assessments, medical 
systems analysis, and operations research studies to be con-
ducted for a variety of scenarios. The tool assumes a systems 
view of the tactical Medical Treatment Facility (MTF) 
network within the theater, where the MTFs are integrated 
with transportation assets and compete for medical/logistics 
resources (staff, equipment, consumables, transporters) as 
casualties flow through the system. Other recent modeling 

and simulation (M&S) work of a similar combat medical 
logistics systems nature is described by von Tersch et al.2

The TML+ output metric that has been of paramount 
interest in 12 theater medical planning studies over the past 
5 years is the died-of-wounds (DOW) due to a delay in 
treatment mortality estimate.3 Typical questions of interest 
have included the following:
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1. How many lives can be saved if a forward surgery 
system is present near the combat area?

2. What is the best way to integrate, in time and space, 
transportation and MTF assets to reduce casualty 
losses in a deployed network of care? 

3. How do spikes in casualty occurrences impact oper-
ating room throughput and mortality for various 
staff and equipment configurations?

The primary objective of this research report is to docu-
ment NHRC’s ongoing effort to develop a statistically based 
model for TML+ and other medical systems analysis models 
that projects the effects of treatment delays and the extent of 
resuscitation available (surgical-level resuscitation versus 
non-surgical-level resuscitation) on battlefield mortality. 
This empirically based capability, perhaps merged with 
available subject matter expert (SME) results, would allow 
medical planners to more confidently estimate the mortality 
risk associated with candidate operational courses of action 
(COAs) for either deliberate planning in the future or for 
crisis action planning for real-time deployments.

2. Background
For use in NHRC’s TML+ discrete event simulation, it is 
assumed that a seriously wounded casualty’s time to death 
is a random variable that has a probability density function 
(pdf) with parameters dependent on the casualty’s injury 
extent, current MTF capability, and past treatment history/
timing. In the model, simulated draws are made from the 
pdf throughout a scenario to interject mortality events. The 
Weibull pdf, to be described later, is currently used in 
TML+ based on an analysis of expert opinion data obtained 
from a panel of nine military medical doctors convened 
at NHRC in November 2003.4-7 The work by von Tersch
et al.2 describes a mortality model that is graphical in nature, 
and, indeed, is similar to a subjective algorithm used in 
TML+ in an earlier version in the 2000 timeframe.8 As 
empirical injury records are now available for Operation 
Iraqi Freedom (OIF) combat, as will be introduced in the 
next section, we seek a more objective data-driven stochas-
tic model for use in TML+ and one perhaps of interest to 
other medical M&S efforts.

For the modeling approach used in TML+, an obvious 
research goal is to confirm/update the expert panel results 
with a statistical analysis of empirical mortality results. 
A prerequisite of this analysis is a large number of recorded 
life-threatening (LT) incidents from an operational scenario 
with sufficient timing information on treatment entry and 
disposition. Real-world casualty resuscitative data from the 
Navy–Marine Corps Combat Trauma Registry Expeditionary 
Medical Encounter Databases (NMC CTR EMED) on OIF 
injuries are used to examine the efficacy of confirming 
and/or supplementing the panel results with a time-based 

mortality analysis.9 The analysis file available covers the 
period from early 2004 to mid-2006 and contains 1079 
injury records deemed to be of a LT nature.10 While certain 
results applicable to TML+ were obtained and will be illus-
trated, several inherent limitations in the NMC CTR data 
structure preclude a full investigation of battlefield mortal-
ity as a function of detailed casualty flow paths and delays 
in treatment as assumed in TML+.11 These limitations will 
be addressed as topics for future research.

This paper is organized as follows: a brief description of 
the SME panel results is given in Section 3; statistical anal-
ysis results of NMC CTR OIF mortality events using 
techniques from the biostatistics and applied life data anal-
ysis literature for certain resuscitative capable MTFs are 
given in Section 4; a graphical comparison with SME panel 
results is given in Section 5; and, finally, suggested future 
activities to extend this research to more completely model 
mortality in terms of treatment delays and additional casu-
alty flow variations are discussed in Section 6.

3. Initial Modeling Results Inferred from 
Subject Matter Expert Opinions
Figure 1 shows subjective observations and estimated results 
from a 2003 medical doctor SME panel5,7 for a patient with 
a high risk of mortality injury. In the figure, the casualty is 
presumed to receive a series of medical interventions for a 
LT injury:

1. by self or a buddy at the point of injury (labeled ‘no 
treatment’);

2. by a field-level corpsman (first responder) after a 
10-minute delay;

3. by the Battalion Aid Station (BAS) MTF after a 
30-minute delay; and, finally,

4. by a Shock Trauma Platoon (STP)/Forward Resusci-
tative Surgical System (FRSS) MTF after 30 min-
utes of delay.

The results illustrate how medical treatment improves 
survival as the casualty moves through the MTF system. 
Curves of this nature are used in TML+ to simulate a time of 
death as a seriously wounded patient flows through the bat-
tlefield medical chain of treatment and evacuation.12 The 
estimated results in the figure presume a Weibull pdf, where 
the parameters are estimated by the ad hoc analytical method 
of matching a few percentile points (Elandt-Johnson and 
Johnson,13 p. 182). The more standard analytical method of 
maximum likelihood, including all of the observations, will 
be used for the empirical results to be described later.

By convention, we define LT injuries as those where a 
casualty is expected to die within the first hour after injury 
(the ‘golden hour’) if no treatment beyond first-aid is 
received by either the individual casualty or from a ‘buddy’. 
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In TML+, LT injuries are identified through patient condi-
tions (PCs) that are designated as having either a high, 
medium, or low risk of mortality within the first hour after 
wounding, where the probability of dying is greater than 
2/3, between 1/3 and 2/3, or less than 1/3, respectively.5,14

The panel was conducted in a Delphi-similar manner, 
where a presumed number of battlefield casualties with var-
ious PCs developed by the Defense Medical Standardization 
Board and used in NHRC’s M&S efforts were assumed to 
be initially injured.15 For each PC and treatment assump-
tion, the panel was asked to estimate the fraction of casualties 
that would be expected to survive after specified time 
epochs, such as 10 minutes, 30 minutes, 1 hour, 3 hours, 
etc., in the various interventions or MTFs. An average value 
of their opinions and the Weibull estimates are shown in 
Figure 1. The rather impressive matching of these expert, 
yet qualitative, opinion results with the Weibull distribution 
is encouraging for the pursuit of a stochastic representation 
and was judged adequate for an initial implementation in 
TML+. Similar curves for medium and low risks of mortal-
ity were obtained.

4. Statistical Analysis Results from 
Navy–Marine Corps Combat Trauma 
Registry Data
The NMC CTR is a data warehouse composed of data sets 
describing events that occur to individual casualties, from 
the POI through the medical chain of evacuation and on to 
long-term rehabilitative outcomes.9 The CTR can assist med-
ical planners, systems analysts, and logisticians in planning 

for the random occurrence of injury types in treatment and 
evacuation scenarios of interest. These data sets provide the 
empirical means to confirm or augment medical logistics 
modeling assumptions to better quantify the optimal mix of 
health-care facilities and providers, medical equipment and 
supplies, and transportation assets affecting battlefield medi-
cal delivery. In this section, we explore the utility of using 
NMC CTR records in a statistical analysis to provide a prob-
ability distribution for the simulated timing of deaths within 
a MTF, a distribution perhaps dependent on prior treatment 
paths as currently modeled in TML+.

Table 1 shows a screen shot of a very small subset of the 
CTR data file. The timing of injury events and MTF entry/
exits along with the disposition data is of primary interest in 
the file but is suppressed in the table to avoid privacy issues. 
The Injury Severity Score (ISS)16 is one of the many ele-
ments in this file for an individual injury and is the basis for 
LT records we will analyze.

4.1 Using the ISS as a Metric for the Risk of 
Mortality
In using the ISS, it is assumed that values less than 9 corre-
spond to injuries that are not life-threatening and values of 9 
or larger correspond to life-threatening injuries. Furthermore, 
life-threatening values between 9 and 14 correspond to a 
low risk of mortality, values between 15 and 24 correspond 
to a medium risk, and values of 25 and above correspond to 
a high risk. The OIF data file with ISS values greater than or 
equal to 9 was slightly over 1000 records. Of these, about 
80% corresponded to patient records at MTF level IIa (surgi-
cal) facilities. The approximately 20% of records remaining 
were from several MTFs (BAS and STP), none of which 
taken separately represented a large enough sample judged 
to be adequate for a statistical analysis.

Too few surgical facility arrivals had detailed informa-
tion on time of wounding or any record of prior treatment 
to permit a reasonable statistical analysis of the mortality 
effects due to specific paths or delays in arrival (original 
goals). However, the patients with complete timing infor-
mation on arrivals and departures did allow an investigation 
of the nature of the random variable for the time to death in 
a surgical facility. The effects of delays in treatment and the 
effects within a MTF are both important in modeling casu-
alty mortality in a simulation tool. It is expected that 
additional records to allow an empirical study of the treat-
ment delay effects will be available in the future.

For the subset of high-risk patients with sufficient timing 
information on arrivals and departures, some 160 records 
with ISS values ≥25 were available across all surgical facili-
ties. Of these, 26 (17.1%) were labeled DOWs for a surgical 
facility disposition, and the remaining 134 were labeled as 
evacuations to the next higher MTF. Corresponding groups 
of medium- and low-risk patients contained less than 
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40 cases and were judged too small for consideration. The 
next section presents a statistical analysis of these 160 data 
results.

4.2 Statistical Results for the ISS-derived Surgical 
Facility High-Risk Records
If we can reasonably demonstrate the characteristics of 
mortality within a MTF to include the shape of a distribu-
tion via a pdf, we can simulate a discrete event in TML+ to 
represent DOW timing. Candidates often used in mortality 
studies include the exponential, gamma, lognormal, 
Gompertz, and Weibull distributions.13 As the 2003 MD 
SME panel results suggested the Weibull distribution, it is 
our first choice here. If the Weibull’s fit to the data is 
deemed unsatisfactory, other models will be examined. The 
life insurance industry typically uses actuarial tables to 
determine expected lifetimes underlying policy premiums 
and do not often depend on simulated individual death 

times as required in a medical logistics systems analysis 
tool such as TML+.13 Hardware reliability and biomedical 
sciences applications typically use distributions from the 
set described above.13,17,18

Figure 2 shows a time-ordered plot of the total DOWs 
and evacuations for the ISS ≥ 25 set. It also shows the 
number of surgical patients remaining at risk versus time, 
computed by subtracting the total number of DOWs and 
evacuations from the entry number (160). These are called 
progressively censored samples in the literature of biomed-
ical sciences and life data analysis as patients enter and 
leave at differing times, and deaths are intermixed with 
withdrawals where the patient is alive.13,17,18

Throughout, the random life time T is assumed to have a 
pdf f(t) and a probability of surviving past time t given by 
the survival function S(t) = Pr[T ≥ t]. To correspond to the 
MD SME panel observations, we examine here the useful-
ness of the Weibull distribution in describing mortality in 
the CTR data set available. The density function with 

Table 1. A desensitized portion of the combat trauma registry (CTR)

Case ID Medical Arrival Injury Triage Injury Subjective Objective Disposition Evac Many 
 Treatment Method severity Category Category Assessment Plan  Priority more data 
 Facility ID  Score   (SOAP) notes   entries 
         

1111 Battalion Aid Non-Medical 34 Immediate Blunt Patient brought to Surgical Urgent 
 Station 2/6 Ground    Fox Co Firm Base Company 
      after IED exploded Charlie 
      4-6 feet from him. 
      Marines on scene 
      state he was thrown 
      10-15 feet from 
      force of blast. ...
1112 Shock Trauma Casualty 57 Immediate Amputation Probable RPG round Died-of- 
 Platoon /  Evacuation    through abdomen, Wounds 
 Forward (CASEVAC)    chest and arm. Initially (DOW) 
 Resuscitative system    treated at BAS with 
 Surgical     valve dressing over 
 System 2     chest ...
1113 Shock Trauma Medical Air 13 Immediate Penetrating 20 y/o ad USMC, IED Evacuated Urgent 
 Platoon /      rear passenger 
 Forward     HMWVV. C/O B/L leg 
 Resuscitative     pain, no LOC, ... 
 Surgical 
 System 7
1114 Battalion Aid Casualty 9 Immediate Perforating Patient suffered GSW Evacuated Priority 
 Station 2/6 Evacuation    to ... aspect of neck.  
  (CASEVAC)    Wound approx 5cm 
  system    just inferior to 
      mandibular angle, ...
1115 Surgical Casualty 26 Immediate Hemothorax 18 y/o Marine - driver Died-of- 
 Company Evacuation    of High-backed  Wounds 
 Charlie (CASEVAC)    Humvee struck by (DOW) 
  system    blast of IED. Occurred 
      30min prior to arrival. 
      Per Corpsman ...
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parameters {a, b} and corresponding survival function for 
the Weibull are18

	 f(t; a, b) = 
a

e
a
b t b

a
t1 b- -` cj m , a	> 0, b > 0, t > 0 (1)

and

	 S(t) = e a
t b

-` j . (2)

The hazard function, h(t), and cumulative hazard function, 
H(t), are also used in the following. Their equations are

	 h(t) = 
( )
( )

S t
f t

= 
a
b

a
t 1b-` j  (3)

and

	 H(t) = 
a
t b` j  (4)

where h(s) is integrated from s = 0 to t. The exponential pdf 
is a special case of the Weibull pdf, where the shape param-
eter b is 1.0; its hazard rate is constant. The parameter a is 
called the scale parameter.

The survival function, S(t), and hazard function, h(t), 
each giving a different view or interpretation of the mortal-
ity process, will be estimated from data plots and analytical 
means in the next section. (Basically, the lengths of life 
times via the survival function and the rate at which deaths 
occur [given by the hazard function] are different views of 
the same process.)

It is assumed that the patients entering the surgical MTFs 
are a random sample from the OIF severely injured popula-
tion, and the injuries incurred are a random sample of the 
battlefield wounds likely from OIF theater operations. It is 
further assumed that the majority of patients arrive at the 

surgical MTFs directly from first responder treatment after 
a nominal delay. Our basic approach will be to characterize 
the pdf of T by exploiting various features of the Weibull 
distribution.

4.3 Weibull Parameters via Graphical and Maximum 
Likelihood Methods of Estimation
A caveat first: the data presented here are said to be right 
censored in that the dependent variable, death time, for the 
patients who were evacuated is known to be greater than 
the time of withdrawal, but the true value is unknown. 
These are often called incomplete samples. It is assumed 
that if these patients had remained in a surgical facility, 
their subsequent death times would be from the same prob-
ability distribution as that observed for the DOWs, i.e. we 
assume that the censoring process is non-informative of 
future survivability. This is a common assumption in the 
literature for graphical and analytical techniques applied to 
life data of this nature (Nelson,18 p. 315).

Probability theory provides essential tools for survival 
analyses of this type of clinical data, but possibilities of 
departures from theoretical models are so great and 
varied that considerable detail is typically required for 
fitting distributions to observations—it is for these rea-
sons that graphical methods are considered of first 
importance to compliment analytical methods such as 
maximum likelihood (Elandt-Johnson and Johnson,13 
p.7). Nelson18 further comments that each method pro-
vides information not provided by the other, e.g., a plot 
helps to assess the validity of the assumed distribution 
and of the data, while analytical methods provide confi-
dence limits and objective estimates. This is the approach 
that we follow.

Various non-parametric techniques exist to estimate the 
empirical survival function S(t). One of the oldest is a so-
called actuarial method dating back some 200 years that 
was developed and used to construct human life tables with 
grouped data by insurance companies for risk analysis. A 
more modern technique uses individual ordered observa-
tions in continuous time. Each technique seeks to estimate 
the probability of survival past some point in time. Estimates 
of the hazard function and the standard error of S(t) are usu-
ally provided for each technique. Example results of these 
methods were provided in various NHRC/TBE technical 
interchange meetings.19 The so-called method of Kaplan–
Meier in continuous time will be used here for a 
non-parametric estimate of S(t) and related functions.17,18 

The analytical method of maximum likelihood, assuming a 
Weibull distribution of life times, will also be used to esti-
mate the parameters of S(t).

Referring again to Figure 2, the basic idea presented by 
Kaplan and Meier is to order the intermixed death and evac-
uation times and compute the survival function after each 
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death using the recursive formula given below. Specifically, 
the Kaplan–Meier estimate of S

i
 after each death event at

time t
i
 is

	 S
i
 = (r

i
 – 1)/r

i
 * S

i – 1
, S

0
 = 1 (5)

where r
i
	 is the reverse rank of the ith death. If there are 

assumed to be n event times in the sample, they are ordered 
from smallest to largest and numbered backwards with 
reverse ranks. Table 2 illustrates the basic approach by 
showing the DOW and evacuation events for the initial 20 
minutes within surgical MTFs, where evacuation times are 
labeled ‘0’ indicating censoring or incomplete data, and ‘1’ 
indicate death events, where the timing is known. Estimates 
of S(t) are computed using Excel and shown in the table. 
Table 3 shows S(t) results after each death event for the 
entire data set using the SYSTAT statistical software pack-
age.20 It also shows various other mortality metrics indexed 
by the death times; the cumulative hazard function and 
Weibull entries will be discussed next.

The equation for the cumulative hazard function of the 
Weibull distribution in (4) can be transformed into

 log (t) = 1
b

log H(t) + log (a) (6)

Table 2. Example data showing the Kaplan–Meier estimates of 
the survival function, S(t), for the first 20 minutes after surgical 
facility entry

Event Time Event 0-censor Nbr Remain Kaplan-Meier 
t, min  1-complete at t, r

i 
Est of S(t)

2 DOW 1 160 0.994
6 DOW 1 159 0.988
7 DOW 1 158 0.981
8 DOW 1 157 0.975
10 DOW 1 156 0.969
11 DOW 1 155 0.963
15 DOW 1 154 0.956
15 Evac 0 153 0.956
15 Evac 0 152 0.956
15 Evac 0 151 0.956
15 Evac 0 150 0.956
15 Evac 0 149 0.956
15 Evac 0 148 0.956
15 Evac 0 147 0.956
15 Evac 0 146 0.956
15 Evac 0 145 0.956
16 Evac 0 144 0.956
17 Evac 0 143 0.956
19 DOW 1 142 0.950
20 Evac 0 141 0.950
...

Table 3. SYSTAT computation for the Kaplan–Meier estimate of the survival function, S(t), and
other measures

Death Number Number K-M Est Std Error Hazard Cumulative Weibull Model 
Time At Risk Dying of S(t) of S(t) Rate, h(t) Hazard, H(t) Survival Prob 
t, min       (via MLE)

2 160 1 0.994 0.006 0.006 0.006 0.995
6 159 1 0.987 0.009 0.006 0.013 0.986
7 158 1 0.981 0.011 0.006 0.019 0.983
8 157 1 0.975 0.012 0.006 0.025 0.981
10 156 1 0.969 0.014 0.006 0.032 0.977
11 155 1 0.962 0.015 0.006 0.038 0.975
15 154 1 0.956 0.016 0.006 0.045 0.967
19 142 1 0.95 0.017 0.007 0.052 0.959
30 131 1 0.942 0.019 0.008 0.059 0.938
32 124 1 0.935 0.02 0.008 0.067 0.935
41 111 1 0.926 0.022 0.009 0.076 0.919
43 110 1 0.918 0.023 0.009 0.085 0.915
44 106 1 0.909 0.024 0.009 0.095 0.914
48 98 2 0.891 0.027 0.010 0.105 0.907
57 89 1 0.881 0.029 0.011 0.116 0.892
64 78 1 0.869 0.03 0.013 0.129 0.88
71 72 1 0.857 0.032 0.014 0.143 0.869
85 68 1 0.845 0.034 0.015 0.158 0.848
101 52 1 0.828 0.037 0.019 0.177 0.824
123 35 1 0.805 0.043 0.029 0.206 0.793
135 31 1 0.779 0.049 0.032 0.238 0.777
140 30 1 0.753 0.054 0.033 0.271 0.77
150 27 1 0.725 0.058 0.037 0.308 0.757
152 23 1 0.693 0.064 0.043 0.352 0.754
155 21 1 0.66 0.069 0.048 0.399 0.751
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to give a linear relationship that can be exploited to estimate 
the parameters {a, b} if the Weibull distribution applies to 
these data, i.e. if the log of time t versus the log of the 
cumulative hazard function plots as a straight line, then a 
simple graphical means results to visually gauge the viabil-
ity of the Weibull distribution. Indeed, linear regression can 
be used to estimate the slope and intercept coefficients in 
Equation (6) via the technique of least-squares analysis to 
give quantitative estimates of the straight-line coeffi-
cients.21 Figure 3 shows the ordered pairs (log(H(t), log(t)) 
computed from Table 3 entries and the fitted linear regres-
sion model. In the figure, H(t) is estimated by summing the 
non-parametric estimates of the hazard rate, h(t) = 1/k, 
where k is the number remaining at risk at time t.

Obviously the Weibull distribution describes these sur-
gical MTF data quite nicely, as indicated by the straight-line 
fit and near-perfect correlation value shown in the figure. 
Least-squares estimates can be transformed as indicated in 
Equation (6) to give the Weibull parameter estimates indi-
cated. Next, we examine the maximum likelihood estimates 
(MLE) of {a, b} via the techniques described by Nelson18 
and compare the parametric model based on the Weibull 
distribution with the non-parametric Kaplan–Meier esti-
mates given in Table 3. An approximate confidence interval 
will also be presented for the survival function. Before pro-
ceeding, we include a brief overview on the method of 
maximum likelihood.

The method of maximum likelihood seeks to determine 
the unknown parameters of a distribution to maximize the 
probability of obtaining the observed set of outcomes. A 
so-called likelihood function, which is the joint probability 
distribution of the known data and the unknown parame-
ters, is formed and parameters are chosen to maximize this 
function. The approach thus provides estimators that agree 
most closely with the observed data. The likelihood func-
tion is typically complex, especially for applications with 
censored results, and statistical software is often required to 
perform the associated optimization: we used the SYSTAT 
package20 to obtain the Weibull parameters in Equation (1) 
and the associated survival probability entries of Table 3. 

Figure 4 shows the Kaplan–Meier non-parametric esti-
mate of the survival function and also the estimate based on 
the parametric Weibull model (both from Table 3). 
Estimates of {a, b} via the linear model transformation in 
Figure 3 agree quite well with the MLE values of Figure 4. 
Confidence intervals were not calculated for the parame-
ters, but we suspect the interval for the shape parameter b	
would contain the value 1.0, indicating that the exponential 
special case of the Weibull would adequately describe these 
results. However, to be consistent with the smaller shape 
parameter values for MTFs prior to surgery as observed in 
the MD SME panel,5,7 we elect to standardize on the two-
parameter version of the Weibull distribution until further 
results are available for analysis.

Given the almost perfect straight-line fit of the Weibull 
hazard function to the empirical hazard function and the 
nice MLE agreement, both graphical and analytical meth-
ods suggest that the Weibull distribution is an adequate fit 
of mortality events in this case. For completeness, we did 
conduct a chi-squared goodness-of-fit test for a life table 
representation of the data on death times and numbers at 
risk in Table 3.22 A computed value of 3.63 was obtained, 
and when compared with the chi-squared tabular value of 
5.99 with two degrees of freedom and an a of 0.05, a null 
hypothesis for the Weibull distribution to describe these 
data could not be rejected.

Figure 5 shows the approximate 95% confidence limits 
about the Weibull S(t) estimate.18 For example, the proba-
bility of survival past 60 minutes is expected to lie between 
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approximately 0.83 and 0.92, where the mean estimate is 
about 0.88. In the next section, the fit of the Weibull distri-
bution to the CTR data is graphically compared with the 
results from the MD SME panel.

5. Comparing the Combat Trauma 
Registry-based Modeling Estimates with 
the Expert Panel Results
We next superimpose curves from the MD SME panel on to 
the CTR-based confidence intervals in Figure 5. The two 
curves labeled ‘Panel- …’ in Figure 6 come from the origi-
nal data collection effort in 2003 for a high-risk PC and the 
casualty flow case ‘first responder to STP/FRSS’.5 These 
curves show how the panel expected delay times of 30 and 
120 minutes from POI to surgical MTF entry to impact 
mortality after the casualty had started treatment there.

From the CTR file available for this analysis, times from 
POI to STP/FRSS entry averaged about 49 minutes for 90 
records that had complete POI and surgical facility entry 
timing data. It is believed that the large majority of these 
records corresponded to the MD SME case, with no inter-
vening treatment after the first responder (i.e. no routing 
through a BAS before surgery entry). It seems logical to 
expect that the upper MD SME curve for a 30-minute delay 
would shift down for the 49-minute empirical delay and be 
closer to the upper CTR confidence limit; we make no 
attempt to estimate that shift. The Weibull curves for the 
49-minute delay look very comparable in basic shape and 
location compared with the MD SME bounds, particularly 
for the entry times less than 75 minutes.
Some caveats are presented next:

• While these analyses appear to confirm the Weibull 
model and the survivability estimates are in a rea-
sonable location on the graph shown in Figure 6, we 
did have a considerable amount of missing data on 
exit timings that were estimated by NHRC SMEs 
with OIF experience in the medical treatment and 
evacuation processes. Some 38% of the casualties 
were missing a CTR exit time that was added manu-
ally from field reports on evacuation events. These 
missing data were researched and resolved before 
any model fitting began.

• As mentioned at the outset, the quest for a best-
fitting model for the timing of combat mortality is 
ongoing for each segment in the casualty flow path 
of treatment and evacuation. Only one segment was 
examined here. As additional injury results become 
available in the NMC CTR EMED, the Weibull dis-
tribution will be a first candidate with other distri-
butions being applied as warranted. For modeling 
and simulation purposes, it would seem desirable to 
have one model that could be applied to all segments 
if an adequate single representation could be dem-
onstrated. It would not be necessary, however.

• The MD SME results shown here are averages of 
the responses by nine MDs. The early results out to 
about 75 minutes track very nicely. Starting after 
75 minutes, the Weibull curves tend towards the 
higher delay curve (120 minutes).

• No attempt is made to perform a statistical test 
of goodness between the MD SME panel and the 
empirical results. The graphical comparison seems 
adequate given the nature of the two sources.

• No attempt is made to integrate the SME results with 
the empirical results to arrive at a combined best esti-
mate of the Weibull parameters for surgical MTFs. 
Related evolving material in the literature, most nota-
bly by Singpurwalla23,24 and Keller-McNulty and 
Wilson,25 seems applicable but is beyond the scope of 
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this research effort at the moment. It was our objec-
tive to demonstrate how comparable the two results 
are and then use the often easier to acquire SME 
opinions for areas where empirical data are not now 
available such as the early interventions in Figure 1.

6. Summary and Future Activities
Our main objective was to determine whether a statistical 
model could adequately describe empirical mortality events 
in a casualty’s medical treatment flow. This effort is directly 
related to confirming the efficacy of the mortality modeling 
approach used in TML+. Considerable effort was devoted 
to obtaining complete CTR records concerning timing of 
injuries, either at the POI, or entries and exits at MTFs. 
Although not reported on here, we also spent considerable 
effort before ISS values were available in exploring the use 
of data-mining methods to identify LT injuries from the 
CTR records; the interested reader is invited to see the com-
panion NHRC technical report.11

Of the records with an ISS score of 25 or higher, 160 had 
both entry and exit timing information at a surgical MTF 
and were judged adequate for a statistical analysis. As only 
limited path data were available on when the injury occurred 
and where a patient had been, the effects of delay time in 
getting to a surgical facility was not addressed. Only the 
one path through a first responder to a surgical MTF was 
deemed adequate to consider.

The results obtained were very good: the probability of 
survival curve (with approximate 95% confidence limits) in 
surgical facilities for high-risk patients showed a strong 
graphical agreement with results inferred from the 2003 
MD SME panel. Parameter estimates for the Weibull distri-
bution were made using both graphical and analytical 
methods.

While the results apply to just one of the medical inter-
vention types in TML+, they are very encouraging for two 
reasons:

1. they strongly reinforce the continued use of the 
Weibull distribution for use in TML+ in surgical 
MTFs; and

2. they help to confirm NHRC’s reliance on special 
panels to provide expert opinions when empirical 
results are unavailable.

As the comparison of empirical and MD SME results is so 
impressive in the case presented, it seems justifiable to con-
tinue using the MD SME inferred Weibull modeling results 
for the other medical intervention facilities and mortality 
risk categories used in TML+ until other empirical data 
become available.

The CTR data set continues to grow, which could enable 
refinement of the conclusions in this paper by applying 

similar analyses to other medical intervention facilities or 
operational theaters. A few possible research paths include 
the following:

• Considering Figure 1 again, it would be very inter-
esting to have early mortality data, before a surgical 
MTF, to study for the steeper curves that more dra-
matically impact casualty mortality.

• Any delay effect from the POI on the Weibull results 
at the surgical MTFs was not examined as too few 
cases would have resulted due to missing entries for 
the time of injury. It seems important to obtain more 
empirical data to look at this important concomitant 
variable for the Weibull model in surgical facilities.

• These results were obtained from OIF CTR wound-
ings. It would certainly be interesting to examine 
these findings with Operation Enduring Freedom 
(OEF) Afghanistan injury data if sufficient records 
were available.

These suggested research items would be logical next steps 
in pursuing a deeper understanding of battlefield mortality sta-
tistical modeling for tactical medical logistics studies and 
analysis and future decision aid developments. We also intend 
to pursue other more general objectives as described below to 
enhance our medical network modeling and simulation tools 
and input data sets to increase their validity for medical plan-
ning efforts such as force sizing and resource allocation.

Medical modeling and simulation provides a continually 
growing contribution to the development of Department of 
Defense medical policy, campaign testing and evaluation, 
technology Research, Development, Test, and Evaluation 
(RDT&E) and medical cost–benefit risk assessment. As the 
interest in medical modeling and simulation grows, so does 
the complexity of the tasks to which it is applied. Medical 
planners now routinely use TML+ and related tools to project 
medical resource, personnel, and transportation requirements. 
However, as these capabilities become accepted as the norm, 
their attention is increasingly focused on more complex 
issues associated with global cost assessment, crisis action 
planning, and human mortality and morbidity projection. 
These evolving areas of interest, however, require substantial 
investments in research dollars to validly define and quantify 
outcome measures in complex modeling and simulation 
tools. The NHRC with its technology partner, Teledyne 
Brown Engineering, is rapidly moving towards the develop-
ment of the empirical data necessary to support accurate 
medical outcome projections in these areas. Recent advances 
in developing knowledge bases sufficient to support these 
evolving initiatives include the establishment and growth of 
the CTR EMED with its rich casualty medical and rehabilita-
tive outcome data. These data have allowed NHRC to project 
global cost assessment, develop crisis action planning tools, 
and project human mortality and morbidity using empirical 
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data beginning with the generation of the casualty at the point 
of injury and continuing on to rehabilitative outcome.
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